A Visualization System for High Dimensional Data Streams using
Complex Event Processing

Arnab Chakrabarti*
RWTH Aachen University, Germany

ABSTRACT

Real-time streaming data analysis and visualization are of main
interest for businesses nowadays to quickly take important decisions
that could help them to enhance the decision-making strategies.
Visualization of real-time data streams helps in the exploration of
evolving data. High-dimensional data is difficult to visualize and
interpret due to the limitations of the display screen that lead to
visual clutter. We propose a system which can efficiently perform
dynamic feature selection using complex event processing with no
prior knowledge of the features. Our system renders data related to
a selected number of features, rather than processing and visualizing
the entire data frame, thus reducing the memory consumption and
increasing performance. We present a distributed architecture of a
framework which helps in the exploration of high dimensional data
streams using different plots and charts in a dashboard that updates
the data in real-time.

Index Terms: Human-centered computing— Visualization—
Visualization Framework—High Dimensional Data Visualiza-
tion; Feature Engineering— Data Stream Visualization—Feature
Selection—Complex Event Processing

1 INTRODUCTION

In recent times, an enormous amount of data is being generated by
various heterogeneous sources and mostly the data is multidimen-
sional making it complex and difficult to interpret. One of the proven
methods to efficiently communicate, comprehend and interact with
this complex and large amounts of information is data visualization.
However, the increasing dimensionality and the growing volumes
of the data pose a challenge to the current analytic systems to vi-
sualize high dimensional data and unfold the hidden information.
This is mainly because human cognition limits the number of data
dimensions that can be visually interpreted. The potential amount
of overlapping data points projected on to a two-dimensional dis-
play hinders the interpretation of meaningful patterns in the data.
Similarly, some business requirements need to handle real-time com-
plex events from high dimensional data streams. Visualizing the
trends from these data streams enables stakeholders to make effec-
tive decisions. For example, in case of weather data, if forecast
data shows an upward trend for temperature or precipitation then
it generates an alert for farmers to take timely action for the crops
or monitoring trends in wind speed and direction could help in real-
time actions for flights by the air traffic controller. Visual rendering
of this high dimensional data in real-time requires high utilization
of CPU and memory. Recently, there have been a lot of develop-
ments on the reduction of high-dimensional streaming data using
the state-of-the-art in dimensionality-reduction techniques. Despite

*e-mail: chakrabarti @dbis.rwth-aachen.de
e-mail: tanuj kulshrestha@rwth-aachen.de
fe-mail: christoph.quix @fit.fraunhofer.de

Tanuj Kulshrestha’
RWTH Aachen University, Germany

Christoph Quix*
Hochschule Niederrhein,
Germany
Fraunhofer FIT, Germany

the adoption of various strategies, information loss is still a major
challenge which makes many visualization strategies insufficient. To
deal with the visualization issues arising from big multidimensional
data, we propose a real-time visual analytics system that is capable
of handling the issues related to scalability and high dimensional-
ity. We handle the “curse of dimensionality” by proposing a novel
feature-selection strategy using Complex Event Processing (CEP)
which detects features that are useful and important for business
goals. We also present a distributed architecture of our proposed sys-
tem using an integrated Apache Storm-CEP topology thus enabling
us to seamlessly ingest and visualize high dimensional data streams
and identify hidden data trends with minimum latency.

1.1 Identifying Data Trends with CEP

Complex Event Processing(CEP) [6] is an efficient technique for
processing high-velocity data in real time. CEP helps in the analysis
of large flows of primitive events to timely detect situations of inter-
est, patterns or trends [4]. In CEP, processing takes place according
to user-defined rules or queries that detect events and patterns from
the event streams. These rules can be written beforehand in the rule
engine and executed to detect the patterns and complex events. It is
also possible to update the rules in run-time by automatically adapt-
ing to the event patterns using Machine Learning and Data Mining
techniques [4,5]. A time-series is a series of data points indexed
in time order, and a streaming time-series S is a sequence of real
values sy, 52, ..., Sy, Wwhere new values are continuously appended
as time progresses [3]. Detecting trends requires us to analyze
event streaming data which is a sequence of data coming at different
time stamps. Events are single atomic occurrences of interest at a
given point in time. Based on the semantics and content of events
they are categorized as primitive event and composite (or complex)
events. Primitive events are single atomic events that stream into
CEP systems, while composite events are detected and extracted
by CEP systems based on the rules having one or more primitive
events combinations [2]. For instance, in real-time weather streams
“increase of temperature” is one primitive event tuple ¢ of type T'.
Similarly, “increase in humidity” is another primitive event tuple p
of type P. In CEP systems a rule can be defined that “increase of
temperature” and “increase of humidity” together generate an alert
for a hot day. The latter is a composite or complex event defined
by using both T and P. As one of the main contributions of this
work we present an approach that processes streaming data using
CEP for feature selection and trend detection for high-dimensional
time-series data streams.

2 OUR APPROACH

Visualizing high dimensional data leads to the problem of over-
plotting which makes hidden trends difficult to identify. Our ap-
proach in visualizing high dimensional data streams is based on the
principle of data reduction using feature extraction through a CEP
engine. The contribution of our work is two-fold. First, we introduce
the use of a CEP based generic system that process the data with
unknown features dynamically. Second, we present a scalable frame-
work which supports interactive visualization and trend detection

of big data. As CEP in itself is not distributive, it is combined with
distributive stream processing architecture called Apache Storm to
improve the performance of real-time visualizations.

2.1 Dynamic Feature Selection using CEP Engine

To explain the concept of dynamic feature selection we use a sample
use case scenario of identifying trends in a high dimensional weather
data consisting of multiple weather events each having different fea-
tures like temperature, pressure, humidity, precipitation, cloud_cover,
latitude, longitude and altitude to name a few. For complex event
processing, we used ESPER [1] as the CEP engine that uses the
query language called Event Processing Language (EPL) for pro-
cessing and analyzing streams of data on the go. The basic idea of
CEP is to filter or extract complex events from the event streamed
data.

2.1.1 Query Generation using CEP Engine

Once we receive the data stream we convert them into event stream
by creating events in run-time using ESPER CEP engine. The
example below shows a sample query that creates the event named
as “weatherEvent”.

@EventRepresentation(objectarray)
CREATE SCHEMA weatherEvent as (propl Map)

»

In the next step, we select distinct features from the “weatherEvent
stream using a single-row function “featureSelectionVarience” that
selects features if the variance of the features is not zero i.e the values
of features changes with time and in turn removing the features
which are stagnant and does not contribute in understanding data
trends. As it is difficult to analyze the entire stream at once we
use sliding windows of fixed lengths. Within this length window,
we detect features that are changing with time using CEP queries.
Below are the simple CEP queries examples in ESPER.

SELECT distinct featureSelectionVariance(e)
from weatherEvent.win:length_batch(5) as e

Then we execute the query “trendsDetection” which is a single-row
function to dynamically detect the trends using Moving Average for
all the features and add the features under the category of trends
such as increasing, decreasing and turn. Below is the example query
used for detecting trends using moving average.

SELECT distinct trendsDetectionMA(e) from
weatherTrendMAEvent.win: length_batch(5) as e

‘We present our proposed algorithm which is used for dynamic feature
selection using variance (Algorithm 1) and detection of trends using
the concept of moving average (Algorithm 2).

With Figure 1 we present the complete data flow starting from
generating streams of data to visualization of data trends.

Whereas Figure 2 depicts the visualization of the selected fea-
tures from the high-dimensional weather data using a “clutter free”
parallel coordinate system. Thus we have been successfully able to
select only those features which are meaningful to the analyst. We
want to reiterate that the features are extracted dynamically based on
the business logic which the analysts can model into dynamic CEP
queries at run-time. In this particular use case, only those features
from the weather data which are important for trends are selected,
eliminating the features that are stagnant over time. In Figure 2 we
can also see from the dynamic stacked bar chart that temperature, hu-
midity, precipitation, pressure, and wind-speed are the features that
keep on changing every 20 seconds showing upward or downward
trends. We can clearly identify that wind-speed and temperature
are showing an upward trend in 3 minutes time window whereas
precipitation keeps on increasing and decreasing. In the later section
we will present briefly the visualization dashboard that is developed

Algorithm 1: Feature Selection using Variance

Procedure : featureSelectionVariance;
Input: Initialize the List of HashMaps IstMaps of all the
events from the LengthWindow W;
Output: List of HashMaps outMaps with selected features;
Calculate average using streams and lambda functions;
for all the HashMaps mapper with key in List do
mapper.put(key, Math.pow(average.get(key) -
mapper.get(key), 2);
end
Calculate variance using streams and lambda functions;
for all the keys in HashMap variance do
if varianceValue != 0 then
map.put(keys, mapper.get(keys));
outMaps.add(map);
else
| continue;
end

end

Algorithm 2: Trends Detection using Moving Average

Procedure : trendsDetectionMA;

Input: Initialize the List of HashMaps IstMaps of all the
events from the LengthWindow W;

Output: trend as HashMap with keys rise, fall and turn;

Calculate average for consecutive HashMaps using streams
and lambda functions;

for all the maps in IstMaps do

for all the keys in firstMap do

if (thirdvalue > secondvalue) and (firstvalue <
secondvalue) then
| trend.put(rise, third);

else if (thirdvalue < secondvalue) and (firstvalue >
secondvalue) then
| trend.put(fall, third);

else
| trend.put(turn, third);

end

end

end

as a part of our work to support real time feature extraction and data
trend exploration.

3 SYSTEM ARCHITECTURE AND VISUALIZATION DASH-
BOARD

To perform real-time visualization, there is a need for having a
system that performs well in terms of latency, memory, and CPU
consumption. It is important to process the data stream quickly
without any delay and overhead to make visualizations responsive.
Also, the goal of our work was to construct generic queries that
perform feature selection without any prior knowledge about the
features. To achieve that, complex event processing is used to dy-
namically identify features and in turn performs feature selection and
trends detection. Extensive research has been done in selecting the
stream processing framework that fulfills both the above-mentioned
goals. But except ESPER, the complex event processing engine,
none of the stream processing frameworks like Spark Streaming and
Kafka Streaming can perform efficiently in processing unknown
features for streaming data. These systems needs to know all the
feature names in advance for aggregation, pattern-matching, and
filtering. In terms of performance, ESPER has lower latency and

Data Stream 4

Event Stream

Filtered Stream 2

press=1018, hum=T.8,

temp=35... R temp=35..

El: press=1018, hum=T7.8,

E1: hum=T7.8, temp=35..

—_—>

press=1018, hum=7.9,
temp=35.5.. ftemp=35.!

E2 :press=1018, hum=7.9,
5.5

E2 :hum=1.9, temp=35.5..

/ 1
| Kafka | |
. press=1018, hum=8.0,

temp=36.. emp=36

E3: press=1018, hum=8.0,

E3:hum=8.0, temp=36..

press=1018, hum=8.1,
lemp=36.5.. femp=36.5

E4:press=1018, hum=8.1,

Trends Visualization

E4:hum=8.1, temp=36.5..

Figure 1: Feature Selection using CEP.

tomperature humity procptaton winspoog
250 1570 44

7.4 \
185

a7z 1eod
870 5
EXE - P
242 / 145
66 /
140
aad T
a2
a0~

58

a5

temporature
numidity

I sossizion

80— — [l wrosposa

000020 000040 000100 O001Z0 000140 000200 000220 000240 000300 000320 000340 00.0400

Figure 2: Visualizations of Selected Feature Set and their hidden
trends

higher throughput as compared to other stream processing frame-
works as discussed above which makes it more suitable for real-time
visualization.

3.1 Storm-Esper Distributed Topology

For distributive processing and visualization of data streams, there
is a need for a real-time stream processing framework that provides
the best performance in terms of latency and throughput and also
performs well in feature selection and trends detection. As trends
detection is only meaningful on the features that are changing with
time, two levels of data stream processing have been proposed in
which at first features are selected by user defined CEP queries and
then the resulting data streams are passed to the query engine for
trends detection. For this kind of processing Apache Storm is useful
which has a concept of spouts and bolts. In storm topology, spouts
act as a source for streams that transforms the data taken from the
message queue to tuples (key-value pairs) and send it to the bolts.
Bolts are the processing unit of Storm topology that process the
tuples. Apache Storm provides an option to rearrange bolts in any
order according to the requirement. It is also possible to perform
stream grouping to decide which streams go to which bolts and do
load balancing to speed up the execution. In storm topology bolts

receive streams of data in the form of tuples from storm spouts.
For our work we use Apache Kafka as a spout in the topology that
takes data streams from Kafka Topics and passes it to the bolts for
processing. Kafka Spouts ingest data streams and convert them
into tuples and pass it on to the feature-selection bolt in which CEP
queries are running. Once the feature selection bolt processes the
streams, it will pass the resulting tuples to the trends detection bolt
which executes the CEP queries for trend detection.

The architecture as shown in Figure 3 consists of several com-
ponents like streaming data sources, Apache Kafka, Apache Storm,
ESPER CEP engine and InfluxDB. Our proposed system utilizes the
components together to create a real-time streaming visualization
framework to understand the evolution and trends of the data with
time. The architecture consists of front-end and back-end modules.
In the back-end at first Kafka is used for data pipeline that takes
data from APIs and other streaming sources to process it further.
Kafka producer sends the data synchronously to the topics and then
consumer consumes the data from it. Storm architecture is used for
distributive processing of the data that has the concept of spouts
and bolts explained in the previous section. Here, Kafka spout is
acting as Katka consumer that consumes the data from the topics and
transform it to the stream of tuples. These tuples are sent to the bolts
where complex event processing takes place with CEP queries. The
storm topology consists of one Kafka Spout, two feature selection
bolts and trends detection bolt. Once the features are selected and
trends are detected, the resulting streams are stored in the InfluxDB
and visualized using the visualization dashboard.

Below in Figure 4 we present the complete visualization dash-
board that we have developed for the purpose of this work. Due to
the lack of space we are not able to describe the implementation
details of the proposed framework however a detailed explanation
can be found here: http://dbis.rwth-aachen.de/cms/staff/
chakrabarti/CEPSVIZ

4 EVALUATION

We have evaluated our approach over 6 data-streams (by connecting
with data sources generating real time high dimensional data) to
compare with a baseline approach (using Apache Flick), and demon-
strate that our approach discovers meaningful feature sets with low
latency and high throughput.

4.1 Experimental Setting

The implementation of proposed framework has been carried out
using JAVA programming language, Zookeeper, Apache Kafka,
Apache Storm, ESPER CEP engine, InfluxDB, and Grafana run-
ning on the remote Linux server. The server hosts a collection of

http://dbis.rwth-aachen.de/cms/staff/chakrabarti/CEPSVIZ
http://dbis.rwth-aachen.de/cms/staff/chakrabarti/CEPSVIZ

’ Event Streamed Data
=
Event Generator HE
Sliding Window

Complex Event Processing

CEP Query

W Streamed :

Data APIs

Feature \
Selection Bolt | .

¢
e

—P» [Kafka
Static Data Spont
Weather Data

High Dimensional Data

;r;:cdt’lon Bolt . ~'
==

RIS

InfluxDB

Dashboard

Storm CEP Topology

Figure 3: System Architecture: Distributed Storm-CEP Topology

temperature,windChill,

Trends Detection - (e Chart)

[I|H Hl ‘ ‘

Figure 4: Visualization Dasboard

16 Intel Xeon X5647 processors of 4 cores clocking at 2.92GHz.
This machine has a primary memory of 24GB buildup of DDR3
800/1066 and runs on Ubuntu 14.04.5 that has a x86_64 architec-
ture. We tested our framework with various datasets which were
ingested by connecting our system to various data APIs, generating
real-time data streams. Finally, we compared the performance of
our system(Storm-Esper Distributed Topology) with that of Apache
Flink in terms of CPU and memory utilization. As seen in Figure 5,
the heap memory used by the system that uses Apache Flink is more
as compared to our proposed Storm-CEP system and the overall
execution time of our framework is much less compared to the Flink
version of the implementation.

5 CONCLUSION AND FUTURE WORK

In this paper, we have addressed the problem of visualizing high
dimensional data streams. For this, we present a generic system

1e8 Used Heap Memory (CEP vs Flink) All threads (CEP vs Flink) — CEP

1\x —Flink

Used Heap Memory (bytes)

15000 20000 25000 30000 35000 40000 45000 50000

Figure 5: Performance Plot(Storm-CEP vs Flink)

that can perform feature selection on real-time high-dimensional
data streams with no prior knowledge about features. We show that
by using our system, high dimensional data is being projected to
lower dimensional space which in turn helps in better exploration
by identifying hidden trends. The system is also scalable and can
be deployed to multi-node storm cluster in case of high volume and
velocity of real-time streaming data for distributive processing. The
experiments that we perform help us to understand the trade-off in
the performance in terms of CPU consumption and memory and
also the performance in terms of execution speed, time, latency, and
throughput of our proposed system. To the best of our knowledge,
no other system dynamically detects features from streaming data
without any prior knowledge about them. The comparative study
of the performances between our system and that of the system
build on top of Apache Flink gives interesting observations. It
has been concluded that when feature selection is performed on
the high-dimensional streaming data, the visualizations improve
in terms of the rendering performance and reduced visual clutter.
Moreover, when the system is combined with a distributive stream
processing framework the latency and throughput of the overall
system improved resulting in even better performance of the visual
exploration tool.

As future work, we would plan to extend our framework by
combining our CEP engine with machine learning routines where
the system can learn from the historic time-series data and train itself
to predict the trends on any given real-time streaming data. By this
way, the system can also be extended for predictions and forecasting
of trends in multidimensional time-series data.

ACKNOWLEDGMENT

This work was funded by the Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation) under Germany’s Excellence
Strategy — EXC-2023 Internet of Production — 390621612.

REFERENCES

[1] Chapter 10. epl reference: Functions. http://esper.
espertech.com/release-6.0.1/esper-reference/html/
functionreference.html, 2020.

[2] I. Flouris, N. Giatrakos, A. Deligiannakis, M. Garofalakis, M. Kamp,
and M. Mock. Issues in complex event processing: Status and prospects
in the big data era. Journal of Systems and Software, 127:217-236,
2017.

[3] M. Kontaki, A. N. Papadopoulos, and Y. Manolopoulos. Continuous
trend-based classification of streaming time series. In East European
Conference on Advances in Databases and Information Systems, pp.
294-308. Springer, 2005.

[4] A. Margara, G. Cugola, and G. Tamburrelli. Learning from the past:
automated rule generation for complex event processing. In Proceedings
of the 8th ACM International Conference on Distributed Event-Based
Systems, pp. 47-58. ACM, 2014.

[5] D.Metz, S. Karadgi, U. Miiller, and M. Grauer. Self-learning monitoring
and control of manufacturing processes based on rule induction and event
processing. In 4th International Conference on Information, Process,
and Knowledge Management (eKNOW 2012), pp. 88-92, 2012.

[6] E. Wu, Y. Diao, and S. Rizvi. High-performance complex event pro-
cessing over streams. In Proceedings of the 2006 ACM SIGMOD in-
ternational conference on Management of data, pp. 407-418. ACM,
2006.

http://esper.espertech.com/release-6.0.1/esper-reference/html/functionreference.html
http://esper.espertech.com/release-6.0.1/esper-reference/html/functionreference.html
http://esper.espertech.com/release-6.0.1/esper-reference/html/functionreference.html

	Introduction
	Identifying Data Trends with CEP

	Our Approach
	Dynamic Feature Selection using CEP Engine
	Query Generation using CEP Engine

	System Architecture and Visualization Dashboard
	Storm-Esper Distributed Topology

	Evaluation
	Experimental Setting

	Conclusion and Future Work

